
Relations (3.10) and (3.12) together form a complete system of equations and boundary 
conditions for determining the motion of a body with a crack. 
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THE SELFSIMILAR DYNAMIC PROBLEM OF A HYDRAULIC CRACK WHEN ITS SIDES INTERACT 

WITH A CLEAVING GAS FLOW* 

YU.N. GORDEYEV 

A selfsimilar solution of the problem of the propagation of a hydraulic 
crack, taking into account the interaction of its edges with a cleaving 
gas flow, is obtained. The influence of this interaction on the stress 
intensity factor (SIF) and the dynamic flow characteristics is studied. 

In the problems of cleavage of an elastic half-space by a rigid wedge, one of the 
factors influencing the SIF is the force of friction between the wedge and elastic medium 
/l/. When solving the quasistationary problems of the hydrofracture of a stratum, the 
firctional forces arising between the gas flow and the crack edges are taken into account 
only in the equation of motion of the flow. The shear stresses connected with the frictional 
forces are neglected when the equations of the theory of elasticity are solved /2/. The 
selfsimilar dynamic problems of the propagation of cracks cleaved by a gas flow were studied 
in this approximation in /5, 6/, using the method of functionally invariant solutions /3, 4/. 
When the cracks are cleaved by means of compressed gas at high velocities, as happens in the 
case of impulsive hydrofracture /7/ and in the problems of explosive fracture /8/, the shear 
stresses arising at the crack edges can become considerable. 

itPr~k~.Matem.Mekhan., 54,4,666-671,199O 



550 

1. Formutation of the problem. In the case of impulsive hydrofracture both liquid and 
compressed gas can be used as the working medium /7/. In the present paper only the cleavage 
of a crack by a gas flow will be discussed. 

In order to describe the motion of the gas flow in a plane crack situated in the plane 
3$ = 0, we shall use the laws of conservation of mass and momentum 

-g (wp) +- & (pwu) = 0, P zzz c2p (1.1) 

p(G u-tu-&)+&P__FF. F=hsp+L (1.2) 

Here P, p, u are the pressure, density and velocity of the gas, w is the opening of the 
crack, F is the force of friction between the gas flow and the crack walls (a quadratic 
dependence of the resistance on the velocity is used, which holds for high velocity flows at 
Re = pwu/y>l, and u is the viscosity of the gas), h, is the coefficient of resistance, c 
is the isothermal speed of sound and 21 (t) is the crack length at the instant t. 

We will write the equations of motion of the elastic medium and Hooke's law in the form 

Q,(X2-2)divwf $-wa t-&w6 ; a,fl=l,2 
P (1 1 

where & (x,, x2, 0, vu (z,, % t) are the potential and solenoidal components of displacement 
vector w (zl, X2, t); x = c,Ic,; cl, cp are the velocities of the longitudinal and transverse waves 
(c1 > c?); %I3 is the stress change tensor 

1 
oap = UC@ - o !z fi and ~$8 is the initial-stress 

tensor /9/. 
We will write the boundary conditions for Eqs.(1.3) and (1.4) in the form (V is the crack 

propagation velocity and c is the homogeneous compressive stress) 

I??? =u-P(z,, t), U12 = t = wFi2; zz = 0. 1 x1 1 < vt 

1L'? = 0, ul* = 0; 4 = 0, vt < 1 x1 I < c,t 
(1.5) 

We assume that the stress tensor component o?? has the following root singularity at 
the crack ends: 

(1.6) 

Here KI(~) is the SIF. 
The boundary conditions for Eqs.(l.l) and (1.2) describing the cleaving gas flow within 

the crack, have the form 
P (q = 0, t) = P,, u (51 = 0 f 0, t) = fU* (1.7) 

(P,, u* are constants). In order to describe the subsonic gas flow (u*< c) within the 
crack, it is sufficient to have a single boundary conditions, e.g. the first condition of 
(l-7), while in the case of a supersonic flow (u*> c) both conditions of (1.7) are necessary 
/lo/. 

2. Method of solving the ekstic probtem. In the case of a selfsimilar loading (P,,T, 
are constants with the dimensions of stress, to is a constant with the dimensions of time, 
and 1 is a non-negative integer) 

P (Xl, t) = P,‘(t/t,)‘-lP (E); T (q, t) = r,~(tlt,)‘-‘z(E); 5 = z,l(vt) (2.1) 

we shall seek the solution of the boundary-value problem (1.3)-(1.6) using the method of the 
functionally invariant Smirnov-Sobolev solutions /3, 4/. 

Let us introduce the functions homogeneous in the variables %r % t, 

u, = aLlat!, v,=aQat’; a= I,2 (2.2) 

(the quantities U, satisfy the wave equation for the longitudinal waves, and Va for the 
transverse waves). 

Representing U,, V, as the real parts of analytic functions of the complex variables 
s1r % and substituting them into (1.3) and (1.4), we obtain (k = 1, 2) 



a’ma -=p Re(2 (U,‘)‘-$ + (1 -cJI~~)(V~)‘$} 
at’ 

a’s,, -=~Re{[xZ(1+o;Z)-2](U,')'~-2(V,')'~} 
81' 

a's,, -=p Re{[x2(1 + @)- 2&](U2[)' $& + 2(V,[)'$} 
at‘ 

HeUkt(zA=Uk (2, +), Re1’kL(z2)=~k(~, $) 

z,l=+ch archI+ 
-i Sk 1 

, Ek = + 

r = (q2 + Jz’)‘/‘, q=-_arctg(+J 
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(2.3) 

The representation (2.3) for the analytic functions uk', Vk’ is identical with the one 
generally used /3/, provided that we replace zii by i/Z,. 

Now we replace the analytic functions u, and V, by the functions W and G, con- 
nected with them when 4 = 0 (zl = z2 = z) by the relations 

dU,‘ldz = G’ (z) + Ii - 2 (c,/z)W’ 

dV,‘ldz = 2 (c,Iz)2W 

(2.4) 

Substituting (V,')', (U,‘)’ into (2.3), we obtain 

(2.5) 

aLa _- 
-= Re (W t_ G) 

att 
R(z)=(c,” - 2~-~)~-4z-2 1/z-2-c;' 1' z-*-c;* 

Let us formulate a boundary-value problem for the analytic functions w' and G' in the 
plane z =O, taking into account (2.5) (Imz =0&-O) 

u(lzI(e,,Re'*=O,ReW'*=O 

1 z 1 < u, Re G'* = 'l,p-'t&W 
Im {W + c2-Z (q-Z - 21z)P (Z)C')* = f t~-iC,-21/z-2- 

c;zlF (z)z_'B'Pl& 

(2.6) 

Usually, when solving the selfsimilar plane dynamic problems of the propagation of a 
crack, we pose the boundary condition by stating that the shear stresses at the crack edges 
are equal to zero /3, 4/. In this case the general solution of the boundary-value problem of 
a crack with normal separation, can be expressed in terms of a single analytic function. In 
the case of the problem of the cleavage of a crack by a flow of gas where the crack interacts 
with the fluid at its edges, both the normal and shear stresses must be specified simul- 
taneously, and the general solution of the boundary-value problem (2.6) cannot be expresed 
in terms of a single analytic function. If the shear stresses at the crack edges are small, 
(for example,when the rate of flow of the cleaving gas is small) T(z~. .z~= O,t)=O, IqI<% 
then GZ 0 and the boundary-value problem (2.6) will be reduced to the usual boundary-value 
problem containing a single analytic function W only. 

To solve the mixed boundary-value problem (2.6) we use the Keldysh-Sedov formulas 

G’=&- (2.7) 
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The solution (2.7) contains 41 constants Aj, Bj (i = 0, . . . . 21- I), whose values can 
be found from the following system of equations: 

$ u.22 (F ut 4 0.0, t) = - -g P (& ut, t) (2.8) , 

When the problems are symmetrical about the axis 51 = 0, the number of constants to be 
determined is reduced. 

3. The seZfsimiZm problem. When the rate of propagation of the crack is constant, 
problem (l-1)-(1.7) has a selfsimilar solution (1 = 1). The pressure, gas velocity and open- 
ing of the crack are expressed in terms of dimensionless functions of the selfsimilar variable 

p 6% 1) = pop0 (9, a (Xl, t) = 0% (E), w (51, t) = w,nu (E) 

w0 = h,vai4, E = (V/C)", N = o/P,, E = s,/(ut) 

(3.1) 

Eqs.(l.l) and (1.2) and conditions (1.7) written in the selfsimilar variables have the 
form (from now on the subscript a on the selfsimilar variables will be omitted) 

d In PidE = --E (u - E)duldE - u2iw 

du/dE = {(u - Qw-’ Iu2 - dwidE1 - I}[1 - E (U - E)?l-' 

P (E = 0) = P*IP,, u (5 = 0 f 0) = fU*/U 

(3.2) 

(3.3) 

The Hugoniot conditions for an isothermal gas can be written in selfsimilar variables 
in the form 

[P (u - E)l = 0, IP + eP (u - E)Zl = 0 

([fl = f (E + 0) - f (E - 0)) 

The following symmetry conditions about the axis E = 0 hold for the gas pressure P 
within the crack, the shear stress at its edges z = h,pul u 118, and the opening of the crack: 

P (-5) = P (E), a (-5) = - T (E), w (-5) = w (E) (3.4) 

From the symmetry conditions it follows that when I =I, expressions (2.7) will con- 
tain only the constant A,(A, = B,, = B, = 0). 

Taking (3.4) into account, we shall approximate the pressure P and tangential stresses 
r by the finite sums (6, is the Heaviside function) 

z (11, t) z h&‘@ 2 rj [ho (Ej - 5) - 260 (- E) + 60 (- %j - 81 
,=I 

The equations of the theory of elasticity are linear, and hence the opening of the crack 
and SIF can also be approximated by the finite sums 

w(E) =j=l ; [P@(E) + r@(E)] 

M 
KI (t) z 2] [PjK:j (t) + ~jK:j (t)] 

j=* 

(3.6) 

Let us find w@-'(E), KIT’ (a = 1,2) for the special case of loading (3.5): P, = P,&,; 

Tj = T&j,; j = 0, . . ., M (there is no summation over 2). 
Substituting the load (3.5) for Pj=PpSj,,~j =r,6j, into (2.7) 1 = 1, A, = B, = B, = 0 

and integrating them over z and t we obtain, taking into account conditions (1.4) 

w(E) = p @l (5) + T,w~~ (%), Kr (t) = PtK,” (t) (K? = 0) (3.7) 
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Ul = cl2 
K (1 - 51”) t 25, 

El= 
1 ue=J!!&$f-_Jfl-_ 

n = vlc,, m = v/c,, a, = xh,ell6, R, (E) = E14u4R (5) 

The constant K is given by the complete elliptic integrals /5/. 
The dynamic selfsimilar problem of the propagation of a hydrofracture in an elastic 

space was solved in /5/ for the case when the frictional forces between the flow and the crack 
walls are neglected z&t) = 0 (TI= 0). 

From (3.7) it follows that, just as in the static solution when the load satisfies the 
symmetry conditions (3.4), then the shear stress T will not contribute directly to the SIF. 
However, since the opening of the crack depends on shear stresses at its edges 7, they will 
affect, through the equations of motion (3.2), the distribution of the gas pressure within 
the crack and hence the SIF. 

The problem of the cleavage of a crack by as flow (3.2), (3.3) was solved numerically. 
The numerical method was based on the use of expansions (3.5), (3.6) /5/. 

Figs.l-3 show some of the computational results with respect to the dimensionless par- 
ameters e = 2.25, II = 0.2, m = 0.3 and P, / (npeh,) = 1. 

Fig.1 Fig.2 Fig.3 

The opening of the crack w, pressure P and the rate of gas flow within the crack 1.4 
are shown inFigs. and 2. Curves 1 and 2 correspond to the values N=O,a, = O(i),a, =0.2(2), 
and curves 3 and 4 to N = 0.3, a, = 0 (S), a, = 0.1 (4). 

The dimensionless parameter es, proportional to the square of the ratio of the crack 
propagation velocity and the speed of sound in the gas, and inversely proportional to the 
coefficient of resistance, characterizes the frictional forces between the cleaving gas flow 
and the crack edges. In the case of impulsive hydrofracture, when the crack is cleaved by a 
supersonic gas flow, we see from Figs.1 and 2 that the frictional forces begin to exert a 
significant influence on the crack profile w and on the distribution of gas pressure P in the 
flow. Moreover, then the gas enters the crack at supersonic velocities, a retardation shock 
wave forms within the flow /5/. Shear stresses at the crack edges increase as the parameter 
OL increases, and the opening of the crack is reduced. The hydraulic resistance of the crack 
increases, and this leads to expulsion of the retardation shock wave from the crack and a 
more rapid drop in the gas pressure along the crack, and hence to decrease in the value of the 
SIF. Fig.3 shows the relation X1= [K~/(P,I/?Z)] x IO* for N=O (curve 1) and for N= 0.3 
(curve 2). 

Thus, when the stratum is impulsively hydraulically cleaved and when the medium is 
fractured explosively, the frictional forces arising between the gas flow and the crack edges 
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may exert a considerable influence on the dynamic of crack propagation. 
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THE EQUATIONS OF MOTION OF CONDENSED MEDIA WITH CONTINUALLY KINETIC FRACTURE* 

A.L. NI and V.E. FORTOV 

A continual model of fracture /l, 2/ within the framework of which the 
degree of damage to the material is determined by the volume of the 
micropores or voids formed as a result of increasing tensile stresses, is 
reformulated to cover the case of viscoelastic media with finite 
deformations. As a result, equations of motion of a viscoelastic medium 
with continual fracture are proposed. In the case of a medium without 
fracture the equations are identical with the equations of motion /3-6/, 
and when the damage is small and the loading uniaxial, they reduce to the 
well-known equations /l/. The properties of certain simplest flows are 
studied using the model proposed. 

A large volume of literature exists, dealing with the rheological models of a continuous 
condensed medium, describing strength effects. A phenomenological approach to constructing 
the defining relations, including, in the limit, the hydrodynamic as well as elastic modes of 
motion of the material, which retains its contnuity, is given in /3, 7/. The problem of 
including fracture in such models has received less attention. A survey is given in /4/ of 
work done up till now dealing with this problem, and a theory of the continual fracture of 
non-linearly elastic model based on a phenomenological approach is developed. A second rank 
tensor whose properties were studied in /4/ is used as the macroscopic measure of material 
damage. By virtue of the assumptions made in /4/, it is established that the increase in the 
damage in thermo-elastic media is governed not by the kinetic equation, but by a finite 
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